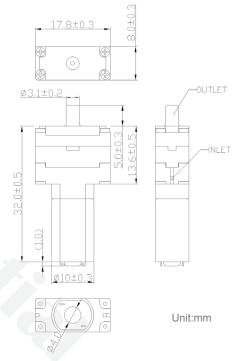
Rotary Diaphragm Pump KPM08 Series KPM08C



Concept

Piston pumps and plunger pumps are reciprocating positive displacement pumps that use a plunger or piston to move media through a cylindrical chamber.

They use a mechanism (typically rotational) to create a reciprocating motion along an axis, which then builds pressure in a cylinder or working barrel to force gas or fluid through the pump. The pressure in the chamber actuates the valves at both the suction and discharge points.

Specifically, air flow rate is proportional to motor speed, piston stroke, and piston diameter.

Features

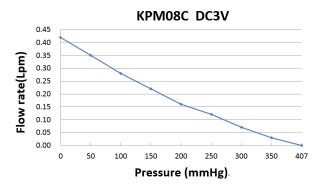
- ▶ Compact size
- Low noise and vibration
- ➤ Suitable for pressure
- ➤ High efficiency
- ➤ High level of gas tightness
- ➤ Long-life diaphragms

Application

- ▶ Medical instruments
- ➤ Wrist-type electric BPM
- ▶ Combustion analyzers
- ➤ Portable gas detectors
- ➤ Household appliances
- ► Healthcare devices

Model Key

Ca	ategory	KOGE	Pump	Туре	Pump Head Size	Series A~Z	Voltage	Series	Output
Dia	aphragm	K	Р	M	08	С	3	А	KPM08C-3A


Specifications

-		
Part Number	KPM08C-3A	
Voltage	DC 3V	
Operating Voltage	DC 2.0 V ~ 3.2 V	
Max. Flow	0.42 L/min	
Max. Pressure	407mmHg	
Max. Current	400mA	
Life	30,000 cycles	
Testing Cycle	On 7s; Off 7s @50CC Tank	
Noise Level	< 65 dB	

Materials

Nozzle	ABS
Valve	Rubber
Diaphragm	Rubber
Motor	DC brush

Curve Graph

